
[Deshmukh, 2(12): December, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852  

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[3509-3515] 

 

IJESRT 
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH 

TECHNOLOGY 
Efficient Implementation of 64-Point FFT/IFFT  for OFDM on FPGA    

Mr. Shreyas D. Deshmukh*1, Mrs. Deepali Sale2 

*1,2
 Lecturer, DYPIET, Pimpri, Pune-18, India 

shreyasdesh09@gmail.com   
Abstract 

 Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier modulation technique which 
divides the available spectrum into many carriers. OFDM uses the spectrum efficiently compared to FDMA.  
With the rapid growth of digital wireless communication in recent years, the need for high-speed mobile data 
transmission has increased. FPGAs have become key components in the implementation of high performance DSP 
systems.  

The objective of this paper is to design and efficiently implement FFT and IFFT blocks required for a base 
band OFDM transmitter and receiver on FPGA hardware. IFFT/ FFT blocks are complex to implement and main 
blocks of OFDM system i.e. it consumes more resources. So, a efficient technique used here in which FFT/IFFT is 
implemented in such a way that it consumes very less resources. This module of 64-point FFT and IFFT is designed 
using VHDL programming language. In this work, a pure VHDL design, integrated with some intellectual property 
(IP) blocks, is employed to implement an OFDM transmitter and receiver. The proposed design is map and test on 
Xilinx Virtex 5 FPGA and for simulation, synthesis and implementation XILINX ISE 13.1 software is used.  
 
Keywords: Orthogonal Frequency Division Multiplexing (OFDM), Field Programmable Gate Array (FPGA), Fast 
Fourier Transform (FFT), Quadrature Amplitude Modulation (QAM), VHDL (VHSIC Hardware Description 
Language). 

Introduction 
 Orthogonal Frequency Division Multiplexing is a 
special case of multicarrier transmission, where a single 
data stream is transmitted over a number of lower-rate 
subcarriers. The main advantage of OFDM is their 
robustness to channel fading in wireless environment. 
 OFDM can be seen as either a modulation 
technique or a multiplexing technique. In OFDM,  
multiplexing is applied to independent signals but these 
independent signals are the part of one main signal. In 
OFDM, the signal itself is first split into independent 
channels, modulated by data and then re-multiplexed to 
create the OFDM carrier [1]. 
 OFDM is a technique especially suitable for 
wireless communication due to its resistance to inter-
symbol interference (ISI) and inter-carrier interference 
(ICI). In single carrier system, if signal get fade or 
interfered then entire link gets failed where as in 
multicarrier system, only a small percentage of the 
subcarriers will be affected. 
 FFT/IFFT are the complex and important block 
of OFDM system, it also requires much of the resources. 
So its efficient implementation regarding power and 
resources is must. So in this paper for implementation of 
FFT, very efficient and innovative technique is proposed 
by Koushik Maharatna, Eckhard Grass, and Ulrich 
Jagdhold [2] is used. This paper also gives comparison 

with other implementation techniques and with available 
IPs for FFT from various vendors.        
    Basic of OFDM system is discussed in the 
section II. The concepts like guard band and cyclic prefix 
are discussed. Also advantages and disadvantages and of 
OFDM is also discussed in this section.  
          Section III is Implementation of FFT/IFFT 
modules. In this section, detail description of FFT/IFFT 
block is given and how to implement these blocks on 
FPGA is also explained in this section.  
In Section IV various other ideas regarding efficient 
implementation of FFT/IFFT such as complex 
multiplication, number representation is discussed. It also 
gives the comparison of implemented architecture with 
various other available IPs. Section V outlines the 
conclusion. 
 
Basic OFDM System 
 In OFDM, each subcarrier has an integer number 
of cycles within a given time interval, and the number of 
cycles by which each adjacent subcarrier differs is 
exactly one, in time domain. Due to this, the spectrum of 
each carrier has a null at the center frequency of the other 
carriers in the system, in frequency domain. This 
property accounts for orthogonality between the 



[Deshmukh, 2(12): December, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[3509-3515] 

 

subcarriers [1]. Because an OFDM receiver, essentially 
calculates the spectrum values at those points that 
correspond to the maxima of individual subcarriers, it 
can demodulate, each subcarrier free from any 
interference from other subcarriers.  
 The generation of OFDM signal started from 
serial to parallel converter. The input data is in serial 
form and need to convert into parallel format, since 
QAM (Quadrature Amplitude Modulation) module 
requires parallel input to process data. These parallel 
converted data is mapped to appropriate symbol, with the 
help of amplitude modulation mapping bank. The 
parallel symbols are transformed from frequency domain 
into time domain, using IFFT module. Now, the signals 
are added with a cyclic prefix and converted into serial 
format, before being transmitted. 

 
Fig. 1 Basic OFDM system 

 
The received data is in serial format, since FFT 

input is in parallel, a module which use to converts from 
serial to parallel is required. Before applying data to the 
FFT unit, cyclic prefix is removed. Output from FFT is 
demodulated, using de-mapping module. To demodulate 
the subcarriers using QAM modulations, reference phase 
and amplitude of the constellation, on each subcarrier are 
required. The output of de-modulating module is 
converted back to serial format, through parallel to serial 
converter, to get the transmitted data [1]. 
Guard Band, Cyclic Prefix & Zero Padding 

An OFDM system is defined by the IFFT/FFT 
length-N, the underlying modulation technique 
(BPSK/QPSK/QAM), supported data rate, etc. The 
FFT/IFFT length N defines the number of total 
subcarriers present in the OFDM system. For example, 
an OFDM system with N=64, provides 64 subcarriers. In 
reality, not all the subcarriers are utilized for data 
transmission. Some subcarriers are reserved for pilot 
carriers (used for channel estimation/equalization and to 
combat magnitude and phase errors in the receiver) and 
some are left unused to act as guard band.   
  OFDM system do not transmit any data on the 
subcarriers, that are near the two ends of the transmission 

band (not necessarily at the ends of the bands, 
implementation may differ). These subcarriers are 
collectively called guard band. The reservation of 
subcarriers to guard band, helps to reduce the out of band 
radiation and thus eases the requirements on transmitter 
front-end filters.  
Advantages and Disadvantages of OFDM  

The OFDM transmission scheme has the following 
advantages: 

1. OFDM is an efficient way to deal with 
multipath; for a given delay spread, the 
implementation complexity is significantly 
lower than that of single carrier system with an 
equalizer. 

2. In relatively slow time varying channels, it is 
possible to significantly enhance the capacity by 
adapting the data rate per subcarrier according 
to the signal to noise ratio of the particular 
subcarrier. 

3. OFDM is robust against narrowband 
interference, because such interference affects 
the only a small percentage of the subcarrier. 

4. OFDM makes single frequency networks 
possible, which is especially attractive for 
broadcasting application. 

On the other hand, OFDM also has some drawbacks 
compared to single carrier modulation: 

1. OFDM is more sensitive to frequency offset and 
phase noise. 

2. OFDM has a relatively large peak to average 
power ratio, which tends to reduce power 
efficiency of power amplifier. 

Thus, in this section, we presented the basic OFDM 
system, advantages and disadvantages of OFDM. In next 
section, implementation of FFT/IFFT module is 
explained.  
  
Fast Fourier Transform 

The Fast Fourier Transform (FFT) and Inverse 
Fast Fourier Transform (IFFT) are derived from the main 
function, namely Discrete Fourier Transform (DFT / 
IDFT). The idea of using FFT/IFFT instead of 
DFT/IDFT is that, the computation of the function can be 
made faster and the number of calculations required in 
case of FFT is very less, as compared to DFT, which is 
the main criterion for implementation in the digital signal 
processing [3]. In DFT, the computation for N-point DFT 
will be calculated one by one for each point. While for 
FFT/IFFT, the computation is done simultaneously and 
this method saves quite a lot of time. Below is the 
equation showing the DFT and from this, the equation is 
derived to get FFT function. 



[Deshmukh, 2(12): December, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[3509-3515] 

 

The discrete Fourier transform (DFT), A(r) of a 
complex data sequence B(k) of length N, where r, k є �0,1,2, … . , N − 1
, can be described as 

A�r� = � B�k�e��π���
���

���
                         �3.1� 

The DFT equation can be re-written into:  

A�r� = � B�k����

���
W�!�                               �3.2� 

The quantity W�!� is defined as: 

W�!" =  e��π��� = cos &2πrkN ' −  j sin &2πrkN ' 

Here the secret lies between DFT and 
FFT/IFFT, where the function above is called Twiddle 
Factor. The number of Twiddle Factors used depends on 
the number of points in FFT/IFFT [3]. 
64-point FFT 

The conventional Cooley–Tukey radix-2 FFT 
algorithm requires 192 complex butterfly operations, for 
a 64-point FFT computation. A radix-2 butterfly unit 
requires one complex multiplication and two complex 
additions. On top of this butterfly unit, one needs 
memory to store the complex twiddle factors and 
complex intermediate data, complicated addressing logic 
and control circuitry. Combining all these circuit 
modules, it is expected that the required resources of the 
entire processor will be quite high.  

The fixed point 32-bit word-width 64-point FFT 
is realized, by decomposing it into a two-dimensional 
structure of 8-point FFTs [2]. This approach reduces the 
number of required complex multiplications, compared 
to the conventional radix-2 64-point FFT algorithm. The 
complex multiplication operations are realized using 
dedicated two-input digital multiplier. The processor 
completes one parallel-to-parallel (i.e., when all input 
data are available in parallel and all output data are 
generated in parallel) 64-point FFT computation in 25 
cycles. The main motivation of this work is to derive and 
investigate an alternative architecture for FFT/IFFT 
computation with moderate silicon area i.e. less use of 
resources. 

We know that, the DFT A(r) of a complex data 
sequence B(k) of length N, where                r, k є �0,1,2, … . , N − 1
, can be described as 

A�r� = � B�k�W�!�
���

���
                                            �3.1� 

where W�!� =  e�+π!�/�. Let us consider that N=MT, r =s + tT and k = l + Mn, where s, l є �0,1,2, . . ,7
 
and m, t є �0,1,2, . . ,7
.  Applying these values in (3.1) 
and simplifying, one gets  

A�s + Tt� = � W456
4��

5��
7W4895 � B�l

8��

:��
+ Mn� W89:;          �3.3� 

Equation (3.3) means that it is possible to realize the FFT 
of length N by first decomposing it into one M and one 
T-point FFT where N=MT, and then combining them. 
This essentially results in a two dimensional structure 
instead of a one-dimensional structure of FFT. Now 
considering M = T = 8, one may formulate the 64-point 
FFT as 

A�s + 8t� = �  
=

5��
7W>?95 � B�l

=

:��
+ 8m� W@9:; W@56        �3.4� 

Equation (3.4) suggests that, it is possible to 
express the 64-point FFT in terms of a two dimensional 
structure of 8-point FFTs plus 64 complex inter-
dimensional constant multiplications. However, since s, l є �0,1,2, . . ,7
, the number of required nontrivial 
complex multiplications is 49. At first, appropriate data 
samples (every eighth data of the incoming data 
sequence) undergo an 8-point FFT computation, 
followed by eight multiplications with the inter-
dimensional constants or twiddle factors  �W>?95 �. Eight 
such computations are needed to generate a full set of 64 
intermediate data, which once again, undergo a second 8-
point FFT operation with the appropriate data ordering. 
As in the case of first 8-point FFT, again eight such 
computations are required. Proper reshuffling of the data 
coming out from the second 8-point FFT generates the 
final output of the 64-point FFT. 

The IFFT can be performed by first swapping 
the real and imaginary parts of the incoming data at the 
primary input, then performing the forward FFT on them 
and once again swapping the real and imaginary parts of 
the data at the output. This method, allows to perform the 
FFT and IFFT, without changing any of the internal 
coefficients.  
Architecture of 64-Point FFT/IFFT 

 



[Deshmukh, 2(12): December, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[3509-3515] 

 

Fig. 2 Block Diagram of 64-point FFT 
The block diagram of the 64-point FFT/IFFT 

processor derived from (3.4) is depicted in Fig. 2. It 
consists of an input unit, two 8-point FFT units, a 
multiplier unit, an internal memory block, an output 
register bank and a 5-bit binary counter that acts as the 
master controller for the entire architecture.  
Input Unit: 

 The Input Unit, consists of an register bank 
(reg(0 to 63)), having 32-bit word length that can store 
64 complex data. Upper 16 bits of each register are used 
to store real part and lower 16 bits for imaginary part of 
the complex number. The input unit is equipped with two 
single-bit signals i.e. en and data_start. The assertion of 
the en signal indicates the presence of a serial valid data 
stream, at the input of the register bank and 
subsequently, the input unit starts its operation. The en 
signal remains at logic 1 for the next 76 cycles after its 
assertion. After assertion of the en signal, at every clock 
cycle, the input data  are serially inputted only at the 63rd 

position of the input register bank (reg(63)) and in the 
successive clock cycles the complex data inside the 
register bank having index i is shifted to the (i-1) th 
position where iє{0,1,2,…,63}. And the data_start signal 
is used to start the control unit i.e. 5-bit binary control 
counter. With the assertion of data_start signal, control 
unit starts the counting and control the various processes.    

The input register bank has eight complex 32-bit 
fixed hard-wired outputs, corresponding to the register 
position index 8j, where jє{0,1,2,…,7}. When the input 
register bank is completely full, the appropriate data (a 
data octet consisting of every eighth data starting with 
index position 0), is treated as the input to the 8-point 
FFT as stated in (3.4). This data octet, in the input buffer 
automatically gets self-aligned with the hard-wired 
outputs and is delivered to the first 8-point FFT unit. In 
the next cycle, the same procedure is executed once 
again because of the shifting of the ith data sample to the 
(i-1)th sample position. 

If this data shifting scheme were not deployed, a 
parallel multiplexing scheme for all the 64 complex input 
data to the 8-point FFT input would be needed. This 
would result in massive multiplexing and a large number 
of global connections. With the present scheme the data 
multiplexing and the number of global connections are 
substantially reduced.  
Multiplier Unit:  

As stated in Section 3.4.2, 49 nontrivial inter-
dimensional constants are to be multiplied to the 
intermediate results coming out from the first 8-point 
FFT unit. However, a close observation of these 
constants reveals that only nine sets of them are unique. 
They are (1,0), (0.995178, 0.097961), (0.980773, 
0.195068), (0.956909, 0.290283), (0.923828, 0.382629), 

(0.881896, 0.471374), (0.831420, 0.555541), (0.773010, 
0.634338), (0.707092, 0.707092), where, in each set, the 
first entry corresponds to the cosine function (the real 
part) and second one corresponds to the sine function 
(the imaginary part) in the expansion of W>?95 .        

The entire inter-dimensional constant 
multiplication operation can be carried out using only 
these nine sets of constants by appropriate swapping of 
their real and imaginary parts and choosing the 
appropriate sign. However, the first set of these constants 
is trivial (1, 0). Thus, in practice, there are eight sets of 
nontrivial constants required for carrying out the inter-
dimensional constant multiplication operation. The 
implication is that, we require a storage space for only 
these eight sets of constants instead of 49. Thus, 
compared to the conventional DIF FFT algorithm, 
significantly less storage space in this scheme is needed.       

On the other hand, because of the full parallel 
implementation of the first 8-point FFT unit, the 
respective computation can be carried out in a single 
clock cycle, which provides a significant leverage in the 
overall computation time. In the final design of the 
multiplier unit, eight such complex multiplier units 
corresponding to the eight sets of the inter-dimensional 
constants are placed in parallel as shown in Fig. 3 as 
Const1,…,Const8. Using this arrangement, theoretically, 
one needs to spend only eight clock cycles all together to 
finish the entire operation. However, in our case, this 
actually results in a requirement of 12 clock cycles. The 
four additional clock cycles come from the fact that, in 
the case of some of multiplication operations, the same 
constant needs to be reused. 

 
Fig. 3 Block Diagram of Multiplier Unit 

 

8 32-bit   

complex        

data            

output           

from first          

8-point           

FFT 



[Deshmukh, 2(12): December, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[3509-3515] 

 

In Table I, for the purpose of simplicity, we 
assume that the first set of data arrives from the 8-point 
FFT at zeroth time instant. At different time instants, the 
constants to be used for the multiplication, with the 
incoming data are indicated by 1, whereas 0 indicates the 
unused constants. At the time instant T=0, effectively no 
multiplication operation is needed, as the zeroth block of 
data (i.e., 8-point FFT output at T=0) from the 8-point 
FFT has to be multiplied by (1, 0) and therefore, none of 
the constants are used. The processing of first, third, 
fifth, and seventh blocks of data (i.e. 8-point FFT output 
at T=1, 3, 5 and 7) requires one clock cycle each where 
all constants except const8 are involved in the 
multiplication process. On the other hand, the processing 
of second and sixth block of data (i.e., 8-point FFT 
output at T=2 and 6) requires two cycles each. This is 
due to the fact that const2, const4 and const6 are reused 
two times, in successive clock cycles for the complex 
multiplication operation. For processing the fourth block 
of data, one needs to spend four clock cycles as const4 is 
reused four times, whereas const8 is reused two times.  
 
Table I. Utilization of the different constants during the 49 

complex multiplication                operations 

Thus, the data coming out of the first 8-point 
FFT block at even time instants has to be kept for more 
than one clock cycle until the multiplication of the full 
set is completed. A straight forward strategy to do this is 
to suspend the operation of the 8-point FFT unit, during 
those clock cycles. This also implies a suspension of 
downward shifting of the data in the input unit, for those 
clock cycles. However, upon completion of the complex 
multiplication for the respective set of 8-point FFT data, 
the downward shifting of the data in the input register 
bank and the 8-point FFT operation resumes once again.  
Apart from these eight sets of constants, the multiplier 
unit also has two 8-to-8 32-bit complex shuffle networks 
at its input and output, respectively, as shown in Fig. 3. 
The input shuffle network, routes the data from the first 
8-point FFT unit to the appropriate constants 
(const1,…,const8) and the output shuffle network maps 
the multiplied data to the appropriate index position of 
the Internal Memory Block MB. 
Internal Memory Block (MB):  

The MB is used for temporary storage of the 64 
complex data, coming from the multiplier unit. Similar to 
the input unit, it has eight hard-wired outputs 
corresponding to the registers having the positional 
indices 8j where jє{0,1,2,…,7}. These outputs are 
directly connected to the input of the second 8-point FFT 
unit.  
Output Unit: 
  For the output unit, we follow the same strategy 
as with the input unit. The Output Unit, consists of an 
register bank (reg(0 to 57)), having 32-bit word length 
that can store 57 complex data. Here, the i th data 
coming from the second 8-point FFT unit is directly 
mapped to the (i-1) th position of the output unit (where 
iє{0,1,2,…,7}) by hard-wired connection. The final 
output in serial form is taken from the zeroth position of 
the output unit as soon as the first data arrives. At every 
cycle, as the new data arrives from the second 8-point 
FFT unit at the (8i) th positions of the output unit, the old 
data corresponding to those positions are shifted 
downwards by one position and the data output 
mechanism proceeds in the same way. 
The Control Mechanism: 

 The controller for the overall architecture is a 
simple 5-bit binary counter. The counter starts counting 
from 0, with the assertion of the signal data_start from 
the input unit, when the 63rdposition of the input register 
bank is filled. At count number 25, the first output data is 
available at the zeroth position of the output register 
bank. All required internal computation is completed and 
the complete set of output data is stored the output 
register bank when the count of the master control 
counter reaches 31. At this point the master control 
counter is reset to zero and can be reactivated when the 

Con
s-
tant 

Block data 
from 8 
point FFT 

0th 1st 2nd 3rd 4th 5th 6th 7th 

Time 
instance 

0 1 2 3 4 5 6 7 8 9 10 11 12 

const1                     
(0.9951-
j0.0980) 

‘0’  ‘1’  ‘0’  ‘0’  ‘1’  ‘0’  ‘0’  ‘0’  ‘0’  ‘1’  ‘0’  ‘0’  ‘1’  

const2                     
(0.9807-
j0.1951) 

‘0’  ‘1’  ‘1’  ‘1’  ‘1’  ‘0’  ‘0’  ‘0’  ‘0’  ‘1’  ‘0’  ‘0’  ‘1’  

const3                     
(0.9569-
j0.2902) 

‘0’  ‘1’  ‘0’  ‘0’  ‘1’  ‘0’  ‘0’  ‘0’  ‘0’  ‘1’  ‘0’  ‘0’  ‘1’  

const4                     
(0.9238-
j0.3827) 

‘0’  ‘1’  ‘1’  ‘1’  ‘1’  ‘1’  ‘1’  ‘1’  ‘1’  ‘1’  ‘1’  ‘1’  ‘1’  

const5                      
(0.8819-
j0.4714) 

‘0’  ‘1’  ‘0’  ‘0’  ‘1’  ‘0’  ‘0’  ‘0’  ‘0’  ‘1’  ‘1’  ‘1’  ‘1’  

Const6                        
(0.8314-
j0.5550) 

‘0’  ‘1’  ‘1’  ‘1’  ‘1’  ‘0’  ‘0’  ‘0’  ‘0’  ‘1’  ‘1’  ‘1’  ‘1’  

const7                     
(0.7730-
j0.6343) 

‘0’  ‘1’  ‘0’  ‘0’  ‘1’  ‘0’  ‘0’  ‘0’  ‘0’  ‘1’  ‘0’  ‘0’  ‘1’  

const8                     
(0.7071-
j0.7071) 

‘0’  ‘0’  ‘1’  ‘0’  ‘0’  ‘1’  ‘1’  ‘0’  ‘0’  ‘0’  ‘1’  ‘0’  ‘0’  



[Deshmukh, 2(12): December, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[3509-3515] 

 

next set of input data fills the 63rd position of the input 
register bank. However, in the meantime, the output 
control counter of the output unit controls the serial data 
output mechanism. 
 
Other Points Related to Implementation of 
Transform  
Complex Multiplication  

The most costly part of the FFT is the complex 
multiplication. By general method, we need 4 simple 
multiplications and 2 simple additions for 1 complex 
multiplication. That is why we need an efficient solution 
to execute the multiplication. First, we separate the 
complex numbers into real part and imaginary part:                                                    
  W = Wr + jWi 
             A = Ar + jAi      where �j+ =  −1�.  
Then complex multiplication of A and W can be done as 
follow: 
         W. A = �Wr + jWi��Ar + jAi� 
                  = Ar. �Wr + Wi� − Wi. �Ar + Ai� 
                   +j�Ar. �Wr + Wi� + Wi. �Ai − Ar��       
As W does not change, we do not have to calculate �Wr + Wi� at runtime. We have to calculate Wri =�Wr + Wi� once and save it in memory. Then we get  W. A = Ar. Wri − Wi. �Ar + Ai� 
                         +j�Ar. Wri + Wr. �Ai − Ar�� 
and only three real valued multiplications and three 
additions/subtractions are required. In this method, we 
require one more addition instead of multiplication. But 
as resources require for addition as compared to 
multiplication is very less and also multiplication is very 
power hungry process, hence this method is efficient as 
compared to general method.  
Number Representation 

For the number representation, a fixed point 16-
bitword-width scheme is used. For floating point 
representation of number, 32 bits are required. We can 
avoid use of such a large number of bits, by using fixed 
point representation of number.  

The twiddle factor W�!� is complex, with the 
magnitude of the real part and the imaginary part of W is 
between zero and one. The twiddle factors, with which 
we have to performed complex multiplication are W� =0.707 − j 0.707, WB = −0.707 − j 0.707 and W+ =−1j . In the proposed implemented algorithm, we 
multiply the other twiddle factors by 256, i.e. in digital 
logic arithmetic, left-shift the number by 8 and round-up 
the number. So, finally the twiddle factor becomes 181- 
j181 and -181- j181. Now, with this new twiddle factor 
values, we perform complex multiplication of butterfly 
unit output. Thus, if before complex multiplication, 8 bits 
are required for representation of real or imaginary 
number (butterfly unit output), then after complex 

multiplication, for real or imaginary number 
representation, 16 bits are required. This extra 
requirement of 8 bits is because of, multiplication of 
twiddle factor by 256. Original multiplication answer is 
obtained, by dividing the number by 256 i.e. right 
shifting the number by 8.     
Main Features and Comparison 

From (3.4), one can infer that a complete 64-
point FFT computation can be carried out, using 49 
nontrivial complex multiplication with the inter-
dimensional constants, excluding 8-point FFT which 
need 4 real multiplication. On the other hand, the number 
of nontrivial complex multiplications for the 
conventional 64-point radix-2 DIT FFT is 66. Thus, the 
present approach results in a reduction of about 24% for 
complex multiplication compared to that required in the 
conventional radix-2 64-point FFT. By the idea proposed 
in section 4.2, number of simple multiplication required 
in every complex multiplication is only 3 instead of 4. 
So, it also results in 25% resource saving, in every 
complex multiplication. This reduction of arithmetic 
complexity further enhances the scope for realizing a 64-
point FFT processor with less resource.  

The algorithm-to-architecture mapping in the 
present design was done with the aim to reduce 
multiplexing and attendant global wirings. The strategy 
of downward shifting of the data in conjunction with the 
self-alignment of it, to the fixed hard-wired connections 
at the input and output register bank, effectively reduces 
the multiplexing and global wiring compared to the 
conventional implementation, by a factor of 64 and 8 at 
the input and output of the input unit and by a factor of 8 
and 64 at the input and output of the output unit. This 
massive reduction of signal multiplexing and global 
wiring implies a better utilization of silicon area, 
reduction of routing overhead, and lower power 
consumption. The effectiveness of the algorithm-to-
architecture mapping methodology adopted here can be 
better appreciated considering the following comparison. 

The performance of the processor has been 
compared with some commercially available 64-point 
FFT/IFFT IP cores. This is shown in Tables II. It is 
evident from Table II that the proposed processor 
requires the smallest number of clock cycles compared to 
all other available commercial IP cores, and thus, is 
expected to be less power hungry than the others. 

Table II.  The performance comparison of the proposed 
FFT/IFFT processor with the          commercially available 

64-point FFT/IFFT IP cores 
IP Core Number of Cycle 
Xilinx 192 

Altera 112 
Proposed 25 



[Deshmukh, 2(12): December, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[3509-3515] 

 

Table III gives device utilization summery for 
64-point FFT. The use of resources of proposed 
technique is also compared with other techniques [4], [5]. 
It is observed that some technique requires more number 
of multiplier [4] and also some more other resources [4] 
[5]. Thus, proposed technique is an efficient way to 
implement 64-point FFT. But this implementation 
technique requires more BRAM. 
 

Table III. Device Utilization Summery of Proposed 
Technique for 64-point FFT 

  

Device Utilization Summary (estimated 
values) 

[-] 

Logic Utilization Used Available Utilization 

Number of Slice Registers 2989 69120 4% 

Number of Slice LUTs 5080 69120 7% 

Number of fully used 
LUT-FF pairs 

1967 6102 32% 

Number of bonded IOBs 48 640 7% 

Number of Block 
RAM/FIFO 

64 148 43% 

Number of 
BUFG/BUFGCTRLs 

1 32 3% 

Number of DSP48Es 32 64 50% 

 
Conclusion  

The main aim of the paper is to implement the 
FFT/IFFT blocks of OFDM system on FPGA using 
VHDL language. The OFDM system is designed on 
Xilinx project navigator for different number of 
subcarrier i.e. FFT and IFFT points. FFT and IFFT are 
important and complex blocks in OFDM system which 
consumes lots of resources. So, its efficient 
implementation in terms of available resources is must. 
In this project, design for efficient implementation of 
FFT and IFFT modules is proposed and implemented. 
Design is implemented on Virtex 5 FPGA using Xilinx 
synthesis tool, tested for different data patterns and 
results are compared with theoretical expected results. 
By manually entering transmitted data at receiver, the 
recovery of the original required data is done. The results 
are matching with expected results.  
 
References 

[1] R.Van Nee, R. Prasad Publication by Artech 
House,“OFDM for wireless Multimedia 
Communications.”, e-book. 
 

[2] Koushik Maharatna, Eckhard Grass, and Ulrich 
Jagdhold, “A 64-Point Fourier Transform Chip for 
High-Speed Wireless LAN Application Using 
OFDM” 

[3] J. W. Cooley and J. W. Tukey, “An Algorithm for 
the Machine Calculation of Complex Fourier 
Series,” Mathematics of Computation, vol. 19, no. 
90, pp. 297–301, 1965. 

[4] Wang Xudong, Liu Yu, “Special-purpose 
computer for 64-point FFT based on FPGA”  

[5] J. M. Rudagi et.al., “An Efficient 64-point 
pipelined FFT Engine” 


