[Deshmukh, 2(12): December, 2013]

| JESRT

ISSN: 2277-9655
Impact Factor: 1.852

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY
Efficient Implementation of 64-Point FFT/IFFT for OFDM on FPGA
Mr. Shreyas D. Deshmukh™, Mrs. Deepali Sal€?

"2 ecturer, DYPIET, Pimpri, Pune-18, India
shreyasdesh09@gmail.com

Abstract
Orthogonal Frequency Division Multiplexing (OFDM$ a multi-carrier modulation technique which
divides the available spectrum into many carri®SDM uses the spectrum efficiently compared to FDMA
With the rapid growth of digital wireless commurtioa in recent years, the need for high-speed reoBita
transmission has increased. FPGAs have becomedieganents in the implementation of high performabD&P

systems.

The objective of this paper is to design and edffitly implement FFT and IFFT blocks required fdvase
band OFDM transmitter and receiver on FPGA hardwlfET/ FFT blocks are complex to implement and mai
blocks of OFDM system i.e. it consumes more resrIr8o, a efficient technique used here in which/HFT is
implemented in such a way that it consumes veryfesources. This module of 64-point FFT and IF-dl@signed
using VHDL programming language. In this work, ag¥HDL design, integrated with some intellectuedgerty
(IP) blocks, is employed to implement an OFDM traitter and receiver. The proposed design is mapt@stdon
Xilinx Virtex 5 FPGA and for simulation, synthesiad implementation XILINX ISE 13.1 software is used

Keywords. Orthogonal Frequency Division Multiplexing (OFDMyield Programmable Gate Array (FPGA), Fast
Fourier Transform (FFT), Quadrature Amplitude Madidn (QAM), VHDL (VHSIC Hardware Description

Language).

Introduction

Orthogonal Frequency Division Multiplexing is a
special case of multicarrier transmission, whesngle
data stream is transmitted over a number of lowass-r
subcarriers. The main advantage of OFDM is their
robustness to channel fading in wireless envirortmen

OFDM can be seen as either a modulation
technique or a multiplexing technique. In OFDM,
multiplexing is applied to independent signals theése
independent signals are the part of one main signal
OFDM, the signal itself is first split into indepdent
channels, modulated by data and then re-multipléged
create the OFDM carrier [1].

OFDM is a technique especially suitable for
wireless communication due to its resistance terint
symbol interference (ISI) and inter-carrier inteeiece
(ICI). In single carrier system, if signal get fade
interfered then entire link gets failed where as in
multicarrier system, only a small percentage of the
subcarriers will be affected.

FFT/IFFT are the complex and important block
of OFDM system, it also requires much of the resesr
So its efficient implementation regarding power and
resources is must. So in this paper for implemantaif
FFT, very efficient and innovative technique isgpoeed
by Koushik Maharatna, Eckhard Grass, and Ulrich
Jagdhold [2] is used. This paper also gives corapari

with other implementation techniques and with alal#
IPs for FFT from various vendors.

Basic of OFDM system is discussed in the
section Il. The concepts like guard band and cymlefix
are discussed. Also advantages and disadvantages an
OFDM is also discussed in this section.

Section Ill is Implementation of FFT/IFFT
modules. In this section, detail description of HFFT
block is given and how to implement these blocks on
FPGA is also explained in this section.

In Section IV various other ideas regarding effitie
implementation of FFT/IFFT such as complex
multiplication, number representation is discussealso
gives the comparison of implemented architecturth wi
various other available IPs. Section V outlines the
conclusion.

Basic OFDM System

In OFDM, each subcarrier has an integer number
of cycles within a given time interval, and the rbenof
cycles by which each adjacent subcarrier differs is
exactly one, in time domain. Due to this, the speutof
each carrier has a null at the center frequendhebther
carriers in the system, in frequency domain. This
property accounts for orthogonality between the

http: // www.ijesrt.confC)l nternational Journal of Engineering Sciences & Research Technology
[3509-3515]

[Deshmukh, 2(12): December, 2013]

subcarriers [1]. Because an OFDM receiver, esdbntia
calculates the spectrum values at those points that
correspond to the maxima of individual subcarrigts,
can demodulate, each subcarrier free from any
interference from other subcarriers.

The generation of OFDM signal started from
serial to parallel converter. The input data issarial
form and need to convert into parallel format, sinc
QAM (Quadrature Amplitude Modulation) module
requires parallel input to process data. Thesellphra
converted data is mapped to appropriate symbah thi
help of amplitude modulation mapping bank. The
parallel symbols are transformed from frequency aiom
into time domain, using IFFT module. Now, the signa
are added with a cyclic prefix and converted irdoicd
format, before being transmitted.

ot

e

] o
Sernal | —T7T 7™ Parellel
- £ t o Mlohiloton |——af m‘I ¥ it - ie]
Parellel | Serial

¥, L B
4
== RF Upcomversic

7 ¥
OFDA Transmdssion M Amox
Chasasel

-t WT -

Parellel | Serial
Wl

n 0
Seiial Parellel

Demodulator

Dermconversion

OF DM Feceilian

Fig. 1 Basic OFDM system

The received data is in serial format, since FFT
input is in parallel, a module which use to convdrom
serial to parallel is required. Before applyingadtd the
FFT unit, cyclic prefix is removed. Output from FR§
demodulated, using de-mapping module. To demodulate
the subcarriers using QAM modulations, referencasph
and amplitude of the constellation, on each suleraare
required. The output of de-modulating module is
converted back to serial format, through paratietérial
converter, to get the transmitted data [1].

Guard Band, Cyclic Prefix & Zero Padding

An OFDM system is defined by the IFFT/FFT
length-N, the underlying modulation technique
(BPSK/IQPSK/QAM), supported data rate, etc. The
FFT/IFFT length N defines the number of total
subcarriers present in the OFDM system. For example
an OFDM system with N=64, provides 64 subcarribrs.
reality, not all the subcarriers are utilized foata
transmission. Some subcarriers are reserved fat pil
carriers (used for channel estimation/equalizatind to
combat magnitude and phase errors in the recearat)
some are left unused to act as guard band.

OFDM system do not transmit any data on the
subcarriers, that are near the two ends of themnasion

ISSN: 2277-9655
Impact Factor: 1.852

band (not necessarily at the ends of the bands,
implementation may differ). These subcarriers are
collectively called guard band. The reservation of
subcarriers to guard band, helps to reduce thefdusnd
radiation and thus eases the requirements on tiiasm
front-end filters.
Advantages and Disadvantages of OFDM

The OFDM transmission scheme has the following

advantages:
1. OFDM is an efficient way to deal with
multipath; for a given delay spread, the

implementation complexity is significantly
lower than that of single carrier system with an
equalizer.

2. In relatively slow time varying channels, it is
possible to significantly enhance the capacity by
adapting the data rate per subcarrier according
to the signal to noise ratio of the particular
subcarrier.

3. OFDM is robust against narrowband
interference, because such interference affects
the only a small percentage of the subcarrier.

4. OFDM makes single frequency networks
possible, which is especially attractive for
broadcasting application.

On the other hand, OFDM also has some drawbacks
compared to single carrier modulation:

1. OFDM is more sensitive to frequency offset and
phase noise.

2. OFDM has a relatively large peak to average
power ratio, which tends to reduce power
efficiency of power amplifier.

Thus, in this section, we presented the basic OFDM
system, advantages and disadvantages of OFDM.xin ne
section, implementation of FFT/IFFT module is
explained.

Fast Fourier Transform

The Fast Fourier Transform (FFT) and Inverse
Fast Fourier Transform (IFFT) are derived from tiein
function, namely Discrete Fourier Transform (DFT /
IDFT). The idea of using FFT/IFFT instead of
DFT/IDFT is that, the computation of the functicenche
made faster and the number of calculations requined
case of FFT is very less, as compared to DFT, which
the main criterion for implementation in the digisggnal
processing [3]. In DFT, the computation for N-pdET
will be calculated one by one for each point. WHde
FFT/IFFT, the computation is done simultaneously an
this method saves quite a lot of time. Below is the
equation showing the DFT and from this, the equaiso
derived to get FFT function.

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3509-3515]

[Deshmukh, 2(12): December, 2013]

The discrete Fourier transform (DFT), A(r) of a
complex data sequence B(k) of length N, where
r,ke{0,1,2,. — 1}, can be described as

A(r) = z Bk)e N

The DFT equat|on can be re-written into:

(3.1)

AQr) = z B(O W, (3.2)
The quantltyW is defined as:
_2ark 2nrk 2nrk
WP = e = cos (<) = ysin ()
Here the secret lies between DFT and

FFT/IFFT, where the function above is called Tweldl
Factor. The number of Twiddle Factors used depends
the number of points in FFT/IFFT [3].

64-point FFT

The conventional Cooley-Tukey radix-2 FFT
algorithm requires 192 complex butterfly operatiofos
a 64-point FFT computation. A radix-2 butterfly uni
requires one complex multiplication and two complex
additions. On top of this butterfly unit, one needs
memory to store the complex twiddle factors and
complex intermediate data, complicated addressigig |
and control circuitry. Combining all these circuit
modules, it is expected that the required resounédise
entire processor will be quite high.

The fixed point 32-bit word-width 64-point FFT
is realized, by decomposing it into a two-dimenalon
structure of 8-point FFTs [2]. This approach redutte
number of required complex multiplications, compghare
to the conventional radix-2 64-point FFT algorithiie
complex multiplication operations are realized gsin
dedicated two-input digital multiplier. The process
completes one parallel-to-parallel (i.e., when iajpput
data are available in parallel and all output date
generated in parallel) 64-point FFT computation2m
cycles. The main motivation of this work is to eerand
investigate an alternative architecture for FFTAIFF
computation with moderate silicon area i.e. less of
resources.

We know that, the DFT A(r) of a complex data

sequence B(Kk) of length N, where
r,ke{0,1,2,...,N — 1}, can be described as
N-1
A(r) = Z BOW, 3.1)

whereWrk = e‘“rk/N Let us consider that N=MF,=
s+tT and k=1+4+Mn, where s,1¢{0,1,2,..,7}
andm,te{0,1,2,..,7}. Applying these values in (3.1)
and simplifying, one gets

ISSN: 2277-9655
Impact Factor: 1.852

M- T-1
A(s +Tb) Z Wit [wil Z B(l
1=0 m=0
+ Mn) W™ (3.3)

Equation (3.3) means that it is possible to redlimeFFT

of length N by first decomposing it into one M anwle
T-point FFT where N=MT, and then combining them.
This essentially results in a two dimensional gtrce
instead of a one-dimensional structure of FFT. Now
considering M = T = 8, one may formulate the 64npoi

FFT as
7 7
As +8t) = Z wel Z B(l
m=0

1=0

+8m) W™ (Wit (3.4)

Equation (3.4) suggests that, it is possible to
express the 64-point FFT in terms of a two dimemsio
structure of 8-point FFTs plus 64 complex inter-
dimensional constant multiplications. However, sinc
s, 1€{0,1,2,..,7}, the number of required nontrivial
complex multiplications is 49. At first, appropeatiata
samples (every eighth data of the incoming data
sequence) undergo an 8-point FFT computation,
followed by eight multiplications with the inter-
dimensional constants or twiddle factaf@/s}). Eight
such computations are needed to generate a fullf €=t
intermediate data, which once again, undergo angke8e
point FFT operation with the appropriate data dragr
As in the case of first 8-point FFT, again eightlsu
computations are required. Proper reshuffling efdata
coming out from the second 8-point FFT generates th
final output of the 64-point FFT.

The IFFT can be performed by first swapping
the real and imaginary parts of the incoming dattha
primary input, then performing the forward FFT dermn
and once again swapping the real and imaginarg drt
the data at the output. This method, allows togrerfthe
FFT and IFFT, without changing any of the internal
coefficients.

Architecture of 64-Point FFT/IFFT
i
Complex

Tnpur
en

Output Aéz-bnl
[Comples
£

First 8-point | Multiplier - Memory |-{Second 8-point
FFTUnt [Unt [Bak) EFTUnit

y| U

§-Dit Binary

data_start Counter

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3509-3515]

[Deshmukh, 2(12): December, 2013]

Fig. 2 Block Diagram of 64-point FFT

The block diagram of the 64-point FFT/IFFT
processor derived from (3.4) is depicted in Fig.It2.
consists of an input unit, two 8-point FFT units, a
multiplier unit, an internal memory block, an outpu
register bank and a 5-bit binary counter that asts¢he
master controller for the entire architecture.

Input Unit:

The Input Unit, consists of an register bank
(reg(0 to 63)), having 32-bit word length that cstore
64 complex data. Upper 16 bits of each registeuaesl
to store real part and lower 16 bits for imaginpayt of
the complex number. The input unit is equipped with
single-bit signals i.e. en and data_start. Thertisaeof
the en signal indicates the presence of a serlal data
stream, at the input of the register bank and
subsequently, the input unit starts its operatiime en
signal remains at logic 1 for the next 76 cycleeraits
assertion. After assertion of the en signal, aryeetock
cycle, the input data are serially inputted ortiyhe 63°
position of the input register bank (reg(63)) andthe
successive clock cycles the complex data inside the
register bank having index i is shifted to the Xith
position wheree{0,1,2,...,63}. And the data_start signal
is used to start the control unit i.e. 5-bit binagntrol
counter. With the assertion of data_start signahtrol
unit starts the counting and control the variouspsses.

The input register bank has eight complex 32-bit
fixed hard-wired outputs, corresponding to the stagi
position index 8j, whereef0,1,2,...,7}. When the input
register bank is completely full, the appropriatdad(a
data octet consisting of every eighth data startirip
index position 0), is treated as the input to thpoBt
FFT as stated in (3.4). This data octet, in thetifquffer
automatically gets self-aligned with the hard-wired
outputs and is delivered to the first 8-point FRTit.uln
the next cycle, the same procedure is executed once
again because of the shifting of tffedata sample to the
(i-1)" sample position.

If this data shifting scheme were not deployed, a
parallel multiplexing scheme for all the 64 compieput
data to the 8-point FFT input would be needed. This
would result in massive multiplexing and a largenber
of global connections. With the present schemedtita
multiplexing and the number of global connectioms a
substantially reduced.

Multiplier Unit:

As stated in Section 3.4.2, 49 nontrivial inter-
dimensional constants are to be multiplied to the
intermediate results coming out from the first 8Apo
FFT unit. However, a close observation of these
constants reveals that only nine sets of them aigua.
They are (1,0), (0.995178, 0.097961), (0.980773,
0.195068), (0.956909, 0.290283), (0.923828, 0.38p62

ISSN: 2277-9655
Impact Factor: 1.852

(0.881896, 0.471374), (0.831420, 0.555541), (0.7930
0.634338), (0.707092, 0.707092), where, in eachtlset
first entry corresponds to the cosine function (thel
part) and second one corresponds to the sine @umcti
(the imaginary part) in the expansionW,.

The entire inter-dimensional constant
multiplication operation can be carried out usingyo
these nine sets of constants by appropriate swaumfin
their real and imaginary parts and choosing the
appropriate sign. However, the first set of thesestants
is trivial (1, 0). Thus, in practice, there aretgigets of
nontrivial constants required for carrying out tihéer-
dimensional constant multiplication operation. The
implication is that, we require a storage spaceociay
these eight sets of constants instead of 49. Thus,
compared to the conventional DIF FFT algorithm,
significantly less storage space in this schenmeésied.

On the other hand, because of the full parallel
implementation of the first 8-point FFT unit, the
respective computation can be carried out in alsing
clock cycle, which provides a significant leveragehe
overall computation time. In the final design ofeth
multiplier unit, eight such complex multiplier usit
corresponding to the eight sets of the inter-dirimerad
constants are placed in parallel as shown in Figs3
Constl,...,Const8. Using this arrangement, theottjca
one needs to spend only eight clock cycles allttuayeto
finish the entire operation. However, in our cages
actually results in a requirement of 12 clock cgcl€he
four additional clock cycles come from the factttha
the case of some of multiplication operations, shene
constant needs to be reused.

/

Const 2

i

J

; Const 3

i fwd
| shulfle

network

Const 4

Const 3

i

Brod
shuffle

network

8
L6-bit
complex

|

i

' 7 : datato
8 32-bit { Const§ | the CB
complex .. 8 register
P / p Cnnst 7 l / 3 clock
data | eyele
output { Const &
from first \ o
8-point /_,/

FFT

Fig. 3 Block Diagram of Multiplier Unit

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3509-3515]

[Deshmukh, 2(12): December, 2013]

In Table I, for the purpose of simplicity, we
assume that the first set of data arrives from8ipmint
FFT at zeroth time instant. At different time ingt the
constants to be used for the multiplication, witke t
incoming data are indicated by 1, whereas 0 indgcttie
unused constants. At the time instant T=0, effetfino
multiplication operation is needed, as the zerdticlbof
data (i.e., 8-point FFT output at T=0) from the @mp
FFT has to be multiplied by (1, 0) and therefor@ea of
the constants are used. The processing of firgtd,th
fifth, and seventh blocks of data (i.e. 8-point FéUtput
at T=1, 3, 5 and 7) requires one clock cycle eahbre
all constants except const8 are involved in the
multiplication process. On the other hand, the pssing
of second and sixth block of data (i.e., 8-pointTFF
output at T=2 and 6) requires two cycles each. Téis
due to the fact that const2, const4 and constGearsed
two times, in successive clock cycles for the camxpl
multiplication operation. For processing the foustbck
of data, one needs to spend four clock cycles astéas
reused four times, whereas const8 is reused twestim

Tablel. Utilization of the different constants during the 49
complex multiplication operations

ConBlock datf0™[15[2" [39[4™ 5™ 7"
s- [from 8
tant|point FFT

Time 0(1|2|3(|4|5/6|7 8 9 10112
instance
constl ‘oryo|orrrofo oo |1’fo o1
(0.9951-
j0.0980
const2 ‘o1 rrrofo oo 1o o1
(0.9807-
j0.1951
const3 ‘o1ryo|o oo oo |1’fo’ o1
(0.9569-
j0.2902
const4 RO 8 I e T T I e I o A e
(0.9238-
j0.3827
constb ‘oryo|o oo oo 1111
(0.8819-
j0.4714
Const6 RO I e T S O O 1 e I o A e
(0.8314-
j0.5550
const7 ‘oryo|o oo oo |1’ fo o1
(0.7730-
j0.6343
const8 ‘oo |ryo o1 |o oo |1 oo
(0.7071-
j0.7071

ISSN: 2277-9655
Impact Factor: 1.852

Thus, the data coming out of the first 8-point
FFT block at even time instants has to be kepniore
than one clock cycle until the multiplication ofettiull
set is completed. A straight forward strategy tatie is
to suspend the operation of the 8-point FFT unitjrdy
those clock cycles. This also implies a suspensibn
downward shifting of the data in the input unit; fbose
clock cycles. However, upon completion of the coempl
multiplication for the respective set of 8-pointT-Hata,
the downward shifting of the data in the input sty
bank and the 8-point FFT operation resumes oncim.aga
Apart from these eight sets of constants, the pligti
unit also has two 8-t0-8 32-bit complex shufflewatks
at its input and output, respectively, as showikim 3.
The input shuffle network, routes the data from filhet
8-point FFT unit to the appropriate constants
(constl,...,const8) and the output shuffle networlpsna
the multiplied data to the appropriate index positof
the Internal Memory Block MB.

Internal Memory Block (MB):

The MB is used for temporary storage of the 64
complex data, coming from the multiplier unit. Simito
the input wunit, it has eight hard-wired outputs
corresponding to the registers having the positiona
indices 8j where €0,1,2,...,7}. These outputs are
directly connected to the input of the second &pBFT
unit.

Output Unit:

For the output unit, we follow the same strategy
as with the input unit. The Output Unit, consisfsan
register bank (reg(0 to 57)), having 32-bit worddth
that can store 57 complex data. Here, the i th data
coming from the second 8-point FFT unit is directly
mapped to the (i-1) th position of the output mihere
ie{0,1,2,...,7}) by hard-wired connection. The final
output in serial form is taken from the zeroth fiosi of
the output unit as soon as the first data arridgéevery
cycle, as the new data arrives from the secondi®-po
FFT unit at the (8i) th positions of the outputtuttie old
data corresponding to those positions are shifted
downwards by one position and the data output
mechanism proceeds in the same way.

The Control Mechanism:

The controller for the overall architecture is a
simple 5-bit binary counter. The counter startsntimg
from 0O, with the assertion of the signal data_shanmn
the input unit, when the &Bosition of the input register
bank is filled. At count number 25, the first outjgiata is
available at the zeroth position of the output segi
bank. All required internal computation is comptetnd
the complete set of output data is stored the autpu
register bank when the count of the master control
counter reaches 31. At this point the master cbntro
counter is reset to zero and can be reactivatea e

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3509-3515]

[Deshmukh, 2(12): December, 2013]

next set of input data fills the §3osition of the input
register bank. However, in the meantime, the output
control counter of the output unit controls theiaetdata
output mechanism.

Other Points Related to Implementation of
Transform
Complex Multiplication

The most costly part of the FFT is the complex
multiplication. By general method, we need 4 simple
multiplications and 2 simple additions for 1 comgple
multiplication. That is why we need an efficientugin
to execute the multiplication. First, we separate t
complex numbers into real part and imaginary part:

W = Wr + jWi
A =Ar+jAi wherg(j? = —1).
Then complex multiplication of A and W can be dase
follow:
W.A = (Wr + jWi)(Ar + jAi)
= Ar. (Wr + Wi) — Wi. (Ar + Ai)
+j(Ar. (Wr + Wi) + Wi. (Ai — Ar))
As W does not change, we do not have to calculate
(Wr + Wi) at runtime. We have to calculal@ri =
(Wr + Wi) once and save it in memory. Then we get
W. A = Ar. Wri — Wi. (Ar + Ai)
+j(Ar. Wri + Wr. (Ai — Ar))
and only three real valued multiplications and ¢hre
additions/subtractions are required. In this method
require one more addition instead of multiplicati®ut
as resources require for addition as compared to
multiplication is very less and also multiplicatiemvery
power hungry process, hence this method is efficisn
compared to general method.
Number Representation

For the number representation, a fixed point 16-
bitword-width scheme is used. For floating point
representation of number, 32 bits are required. dAfe
avoid use of such a large number of bits, by usixep
point representation of number.

The twiddle factorWgXis complex, with the
magnitude of the real part and the imaginary phwas
between zero and one. The twiddle factors, withctvhi
we have to performed complex multiplication #é =
0.707 —j0.707, W3 = —0.707 —j 0.707 andW? =
—1j. In the proposed implemented algorithm, we
multiply the other twiddle factors by 256, i.e. digital
logic arithmetic, left-shift the number by 8 andindl-up
the number. So, finally the twiddle factor becom®&d-
j181 and -181- j181. Now, with this new twiddle tiaic
values, we perform complex multiplication of bufter
unit output. Thus, if before complex multiplicatidhbits
are required for representation of real or imaginar
number (butterfly unit output), then after complex

ISSN: 2277-9655
Impact Factor: 1.852

multiplication, for real or imaginary number
representation, 16 bits are required. This extra
requirement of 8 bits is because of, multiplicatioh
twiddle factor by 256. Original multiplication anewis
obtained, by dividing the number by 256 i.e. right
shifting the number by 8.

Main Features and Comparison

From (3.4), one can infer that a complete 64-
point FFT computation can be carried out, using 49
nontrivial complex multiplication with the inter-
dimensional constants, excluding 8-point FFT which
need 4 real multiplication. On the other hand,nhmber
of nontrivial complex multiplications for the
conventional 64-point radix-2 DIT FFT is 66. Thtise
present approach results in a reduction of abo%i fa
complex multiplication compared to that requiredthie
conventional radix-2 64-point FFT. By the idea psgd
in section 4.2, number of simple multiplication weed
in every complex multiplication is only 3 insteafl &

So, it also results in 25% resource saving, in ever
complex multiplication. This reduction of arithrmeti
complexity further enhances the scope for realizréy-
point FFT processor with less resource.

The algorithm-to-architecture mapping in the
present design was done with the aim to reduce
multiplexing and attendant global wirings. The &gy
of downward shifting of the data in conjunction lwthe
self-alignment of it, to the fixed hard-wired costiens
at the input and output register bank, effectivelgluces
the multiplexing and global wiring compared to the
conventional implementation, by a factor of 64 &ndt
the input and output of the input unit and by adaof 8
and 64 at the input and output of the output uRitis
massive reduction of signal multiplexing and global
wiring implies a better utilization of silicon area
reduction of routing overhead, and lower power
consumption. The effectiveness of the algorithm-to-
architecture mapping methodology adopted here @an b
better appreciated considering the following coriguer.

The performance of the processor has been
compared with some commercially available 64-point
FFT/IFFT IP cores. This is shown in Tables Il. ¢t i
evident from Table Il that the proposed processor
requires the smallest number of clock cycles coeghém
all other available commercial IP cores, and thss,
expected to be less power hungry than the others.

Tablell. The performance comparison of the proposed
FFT/IFFT processor with the commercially available
64-point FFT/IFFT |P cores

IP Core Number of Cycle
Xilinx 192
Altera 112
Proposed 25

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3509-3515]

[Deshmukh, 2(12): December, 2013]

Table Il gives device utilization summery for
64-point FFT. The use of resources of proposed
technique is also compared with other techniqug434
It is observed that some technique requires monebeu
of multiplier [4] and also some more other resosrg
[5]. Thus, proposed technique is an efficient way t
implement 64-point FFT. But this implementation
technique requires more BRAM.

Tablelll. Device Utilization Summery of Proposed
Technique for 64-point FFT

Device Utilization Summary (estimated [
values)

Used |Available | Utilization
Number of Slice Registe2989 69120 4%
Number of Slice LUTs 508069120 7%

Logic Utilization

Number of fully usec

0,
LUT-FF pairs 19676102 32%
Number of bonded IOBs| 48 640 7%
Number of Block 0
RAM/EIEO 64 148 43%
Number of 0
BUFG/BUFGCTRLSs 1 32 3%
Number of DSP48Es 32 64 50%
Conclusion

The main aim of the paper is to implement the
FFT/IFFT blocks of OFDM system on FPGA using
VHDL language. The OFDM system is designed on
Xilinx project navigator for different number of
subcarrier i.e. FFT and IFFT points. FFT and IFF& a
important and complex blocks in OFDM system which
consumes lots of resources. So, its efficient
implementation in terms of available resources istn
In this project, design for efficient implementatiof

FFT and IFFT modules is proposed and implemented.

Design is implemented on Virtex 5 FPGA using Xilinx
synthesis tool, tested for different data patteams
results are compared with theoretical expectedlteesu
By manually entering transmitted data at receitke,
recovery of the original required data is done. Tdgults
are matching with expected results.

References

[1] R.Van Nee, R. Prasad Publication by Artech
House,"OFDM for wireless Multimedia
Communications.”, e-book.

(2]

(3]

(4]
(5]

ISSN: 2277-9655
Impact Factor: 1.852

Koushik Maharatna, Eckhard Grass, and Ulrich
Jagdhold, “A 64-Point Fourier Transform Chip for
High-Speed Wireless LAN Application Using
OFDM”

J. W. Cooley and J. W. Tukey, “An Algorithm for
the Machine Calculation of Complex Fourier
Series,” Mathematics of Computation, vol. 19, no.
90, pp. 297-301, 1965.

Wang Xudong, Liu Yu, “Special-purpose
computer for 64-point FFT based on FPGA”

J. M. Rudagi etal., “An Efficient 64-point
pipelined FFT Engine”

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology

[3509-3515]

